A Numerical Study of the Effects of Wave-Induced Fluid Flow in Porous Media: Linear Solver
نویسندگان
چکیده
In this paper, we present a computational method to simulate wave propagation in porous rocks saturated with Newtonian fluids over a range of frequencies of interest. The method can use a digital representation of a rock sample where distinct material phase and properties at each volume cell are identified and model the dynamic response of the rock to an acoustic excitation mathematically with a coupled equation system: elastic wave equation in solid matrix and viscous wave equation in fluid. The coupled wave equations are solved numerically with a rotated-staggered-grid finite difference scheme. We simulate P-wave propagation through an idealized porous medium of periodically alternating solid and fluid layers where an analytical solution is available and obtain excellent agreements between numerical and analytical solutions. The method models the effect of pore fluid motion on the rock dynamic response more accurately with a linearized Navier-Stokes equation than with the viscoelastic model of the generalized Maxwell body, a low frequency approximation commonly used to overcome the difficulty of modeling frequency-dependent fluid shear modulus in time domain.
منابع مشابه
Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media
Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...
متن کاملParametric Study on Wave Interaction with a Porous Submerged Rubble Mound Breakwater Using Modified N-S Equations and Cut-Cell Method
In this paper wave transformation in a submerged sloped breakwater and its hydraulic performance was simulated by developing a numerical model in Fortran. The code was established by combining porous flow and a two-phase model using VOF method. Modified Navier-Stokes and k-ε equations implemented to the model to simulate the flow in porous media. Cut cell method was modified to simulate...
متن کاملExperimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media
The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...
متن کاملUsing Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel
A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...
متن کاملAxisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition
The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip bo...
متن کامل